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Abstract. The nonlocal version of the SU(2) × SU(2) symmetric four-quark interaction of the NJL type
is considered. Each of the quark lines contains the form factors. These form factors remove the ultraviolet
divergences in quark loops. The additional condition on the quark mass function m(p) ensures the absence
of the poles in the quark propagator (quark confinement). The constituent-quark mass m(0) is expressed
through the cut-off parameter Λ, m(0) = Λ = 340 MeV in the chiral limit. These parameters are fixed
by the experimental value of the weak pion decay and allow us to describe the mass of the light scalar
meson, the strong decay ρ → ππ and the D/S ratio in the decay a1 → ρπ in satisfactory agreement with
the experimental data.

PACS. 14.40.-n Mesons – 11.10.Lm Nonlinear or nonlocal theories and models – 12.39.Ki Relativistic
quark model

1 Introduction

The effective meson Lagrangians obtained on the basis
of the local four-quark interaction of the Nambu–Jona-
Lasinio (NJL) type satisfactorily describe low-energy me-
son physics [1–4]. However, these models contain ultravi-
olet (UV) divergences and do not describe quark confine-
ment. Therefore, additional regularization is necessary in
these models. Besides, it is impossible to take into account
the dependence of the amplitude of different processes on
large external momentum in order to provide quark con-
finement. This situation restricts the predictive power of
these models. Satisfactory results in these models can be
obtained only for light mesons and interactions at low en-
ergies in the range of 1 GeV. In order to overcome these
restrictions, it is necessary to consider nonlocal versions
of these models which allow us to remove UV divergences
and describe the quark confinement.

A lot of models of this type were proposed in the last
few years. Unfortunately, we cannot give here the full list
of references concerning this activity. Therefore, we will
concentrate only on the direction connected with the non-
local quark interaction motivated by the instanton the-
ories [5–8]. Recently, a few nonlocal models of this type
were proposed [9–12]. In these models the nonlocal ker-
nel is taken in the separable form where each quark line
contains form factors following from instanton theories.
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These form factors naturally remove UV divergences in
quark loops. Thus, in [9,10] a nonlocal form factor was
chosen in the Gaussian form f(p) = exp(−p2/Λ2), where
Λ is the cut-off parameter1. In [11,12] it was proposed to
use an additional condition for the form factor f(p) (quark
mass function m(p), respectively) which leads to the ab-
sence of the poles in the quark propagator. Namely, it is
supposed that the scalar part of the quark propagator is
expressed through the entire function

m(p)
p2 +m2(p)

=
1
µ
exp

(−p2/Λ2
)
, (1)

where µ is an additional arbitrary parameter. The similar
condition providing confinement was used in [13–15].

In this work an analogous condition will be used. How-
ever, we will take into account that each quark line con-
tains the square of the form factor which is expressed
through the quark mass

m(p)f2(p)
p2 +m2(p)

→ m2(p)
p2 +m2(p)

= exp
(−p2/Λ2

)
. (2)

As a result, we obtain a simpler solution for the mass func-
tion than in [11,12]. In our model m(0) and the cut-off
parameter Λ have a simple connection in the chiral limit
m(0) = Λ; the function m(p) contains only one arbitrary

1 Here and further all expressions are given in Euclidean do-
main.
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parameter. We fix this parameter by weak pion decay.
Then, for Fπ = 93 MeV we have m(0) = Λ = 340 MeV.
This leads to reasonable predictions for the scalar-meson
mass, the width of the decay ρ → ππ and the D/S ratio
in the decay a1 → ρπ, where D, S are the partial waves
of this decay.

The paper is organized as follows. In sect. 2, we con-
sider a nonlocal four-quark interaction and after bosoniza-
tion derive the gap equation for the dynamical quark mass.
The additional condition for this mass allows us to pro-
vide the quark confinement. In sect. 3, the masses and
couplings of the scalar and pseudoscalar mesons are ob-
tained and the main parameters of the model are fixed.
The decay width σ → ππ is calculated. In sect. 4, the
vector and axial-vector sectors of the model are consid-
ered. The a1-meson mass, decay widths ρ → ππ, a1 → ρπ
are calculated. The D/S ratio in the decay a1 → ρπ is
estimated. The π-a1 mixing is studied. The discussion of
the obtained results and comparison with other models is
given in the last section.

2 SU(2) × SU(2) nonlocal quark interaction

The SU(2) × SU(2) symmetric action with the nonlocal
four-quark interaction has the form

S(q̄, q) =
∫

d4x

{
q̄(x)(i∂̂x −mc)q(x)

+
G1

2
(Ja

π(x)J
a
π(x) + Jσ(x)Jσ(x))

−G2

2
(
Jµ a

ρ (x)Jµ a
ρ (x) + Jµ a

a1
(x)Jµ a

a1
(x)

)}
, (3)

where q̄(x) = (ū(x), d̄(x)) are the u- and d-quark fields,
mc is the diagonal matrix of the current quark masses, G1

is the coupling constant of the scalar- and pseudoscalar-
quark currents, G2 is the coupling constant of the vector
and axial-vector quark currents. The nonlocal quark cur-
rents JI(x) are expressed as

JI(x)=
∫
d4x1d4x2f(x1)f(x2)q̄(x−x1)ΓI q(x+x2), (4)

where f(x) are the nonlocal functions. In (4) the matrices
ΓI are defined as

Γσ = 1, Γ a
π = iγ5τa, Γµ a

ρ = γµτa, Γµ a
a1

= γ5γµτa,

where τa are the Pauli matrices and γµ, γ5 are the Dirac
matrices.

In this article, we mainly consider the strong inter-
actions. The electroweak fields may be introduced by
gauging the quark field by the Schwinger phase factors
(see [8–10]).

After bosonization the action becomes

S(q, q̄, σ, π, ρ, a) =
∫

d4x

{
− 1
2G1

(
πa(x)2 + σ̃(x)2

)
+

1
2G2

(
(ρµ a(x))2 + (aµ a

1 (x))2
)
+ q̄(x)(i∂̂x −mc)q(x)

+
∫

d4x1d4x2 f(x− x1)f(x2 − x) q̄(x1)
(
πa(x)iγ5τa

+σ̃(x) + ρµ a(x)γµτa + aµ a
1 (x)γ5γµτa

)
q(x2)

}
, (5)

where σ̃, π, ρ, a are the σ-, π-, ρ-, a1-meson fields, respec-
tively. The field σ̃ has a nonzero vacuum expectation value
〈σ̃〉0 = σ0 �= 0. In order to obtain a physical scalar field
with zero vacuum expectation value, it is necessary to shift
the scalar field as σ̃ = σ+σ0. This leads to the appearance
of the quark mass function m(p) instead of the current
quark mass mc

m(p) = mc +mdyn(p), (6)

where mdyn(p) = −σ0f
2(p) is the dynamical quark mass.

From the action, eq. (5), by using〈
δS

δσ

〉
0

= 0,

one can obtain the gap equation for the dynamical quark
mass

mdyn(p) = G1
8Nc

(2π)4
f2(p)

∫
d4

Ekf2(k)
m(k)

k2 +m2(k)
. (7)

The right-hand side of this equation is the tadpole of the
quark propagator taken in the Euclidean domain. Equa-
tions (6), (7) have the following solution:

m(p) = mc + (mq −mc)f2(p), (8)

where mq = m(0).
In order to provide quark confinement we propose the

following anzatz for the quark mass function m(p). We
suppose that mass satisfies the following condition in the
chiral limit:

m2(p)
m2(p) + p2

= exp
(−p2/Λ2

)
. (9)

The form of the left-hand side of this equation coincides
with the integrand in the gap equation (7). From eq. (9)
we obtain the following solution2:

m(p) =
(

p2

exp (p2/Λ2)− 1

)1/2

; (10)

here we have only one free parameter Λ; m(p) does not
have any singularities in the whole real axis and exponen-
tially drops as p2 → ∞ in the Euclidean domain. From

2 Here only the positive solution will be used.
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eq. (8) it follows that the form factors have a similar be-
havior that provides the absence of UV divergences in our
model. At p2 = 0 the mass function is equal to the cut-
off parameter Λ, m(0) = Λ. The pole part of the quark
propagator also does not contain singularities that provide
quark confinement3

1
m2(p) + p2

=
1− exp

(−p2/Λ2
)

p2
. (11)

When taking into account the current quark mass,
eq. (9) can be modified as follows:

m2(p)−m2
c

m2(p) + p2
= exp

(−(
p2 +m2

c

)
/Λ2

)
. (12)

Here, m2
c is introduced in the form that conserves the an-

alytical properties of the mass function m(p). Then the
mass function takes the form

m(p) =

(
m2

c + p2 exp
(−(

p2 +m2
c

)
/Λ2

)
1− exp (−(p2 +m2

c)/Λ2)

)1/2

. (13)

3 Pseudoscalar and scalar mesons

Let us consider the scalar and pseudoscalar mesons. The
meson propagators are given by

Dσ,π(p2) =
1

−G−1
1 +Πσ,π(p2)

=
g2

σ,π(p
2)

p2 −M2
σ,π

, (14)

where Mσ,π are the meson masses, gσ,π(p2) are the func-
tions describing the renormalization of the meson fields
and Πσ,π(p2) are the polarization operators defined by

Πσ,π(p2) = i
2Nc

(2π)4

∫
d4kf2(k2

−)f
2(k2

+)

×Sp [S(k−)Γσ,πS(k+)Γσ,π] , (15)

where k± = k ± p/2.
For the calculation of these integrals it is necessary

to rewrite these expressions in the Euclidean space where
the form factors (and quark masses) are the exponentially
decreasing functions. Then eq. (15) takes the form

Πσ,π(p2) =
2Nc

(2π)4m2
q

∫
d4

Ek

× Pσ,π(k2, p2, p · k)
(k2

+ +m(k2
+)2)(k2− +m(k2−)2)

. (16)

The functions Pσ,π(k2, p2, p · k) are the Dirac trace multi-
plied by m(k+), m(k−). In eq. (16) all momenta are Eu-
clidean. In the description of the meson properties it is
necessary to make the analytical continuation of this ex-
pression over external momenta p to the Minkowski space.

3 Note that similar functions were used in [14–16] in order
to describe the quark confinement.

Let us emphasize that at our anzatz for a quark mass func-
tion only the functions Pσ,π(k2, p2, p · k) contains nonana-
lytical root cuts, whereas there are no problems with the
analytical continuation of the denominator.

The meson masses Mσ,π are found from the position
of the pole in the meson propagator

Πσ,π(M2
σ,π) = G−1

1 , (17)

and the constants gσ,π(M2
σ,π) are given by

g−2
σ,π(M

2
σ,π) =

dΠσ,π(p2)
dp2

|p2=M2
σ,π

. (18)

Firstly, let us consider this model in the chiral limit.
The pion constant gπ(0) does not depend on the parameter
Λ and takes the form

g−2
π (0) =

Nc

4π2

(
3
8
+

ζ(3)
2

)
, gπ(0) ≈ 3.7; (19)

here ζ is the Riemann zeta-function.
The gap equation has the simple form

G1Λ
2 =

2π2

Nc
. (20)

The quark condensate is

〈q̄q〉0 = − Nc

4π2

∞∫
0

duu
m(u)

u+m2(u)
. (21)

The Goldberger-Treiman relation is fulfilled in the model
of this kind [9,10,8,12]

Fπ =
mq

gπ
. (22)

From eqs. (19), (22) the value Λ = mq = 340 MeV is
obtained for Fπ = 93 MeV. Then, from eqs. (20), (21) we
obtain

G1 = 56.6GeV, 〈q̄q〉0 = −(188MeV)3. (23)

In the description of the pion mass it is necessary to in-
troduce the nonzero current quark mass mc. In our model
M2

π  Λ2. Therefore, we can consider only the lowest
order of the expansion in small p2. Then, one gets from
eq. (14)

M2
π = g2

π(0)


G−1

1 − Nc

2π2

∞∫
0

duu
f(u)4

u+m2(u)


 . (24)

By using the expression for G1 from the gap equation (7),
the Gell-Mann–Oakes–Renner relation can be reproduced:

M2
π = −2mc〈q̄q〉0

F 2
π

+O(m2
c). (25)
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From eq. (25) with Mπ = 140 MeV we can estimate the
value of the current quark mass mc ≈ 13 MeV. Other
model parameters in this case change very little

Λ = 343MeV, gπ(Mπ) = 3.57,
G1 = 56.5GeV, 〈q̄q〉0 = −(189MeV)3. (26)

Therefore, in calculations of the amplitudes of various pro-
cesses we can use the values of parameters taken in the
chiral limit.

With the help of the parameters (23) we get for the
sigma-meson Mσ = 420 MeV and gσ(Mσ) = 3.85. The
amplitude of the decay σ → ππ is equal to A(σ→π+π−) =
1.67 GeV. Then, the total decay width is Γ(σ→ππ) =
150 MeV. Comparing these results with experimental data
one finds that Mσ is in satisfactory agreement with exper-
iment M exp

σ = 400–1200; however, the decay width is very
small Γ exp

σ = 600–1000.

4 Vector and axial-vector mesons

The propagators of the vector and axial-vector mesons
have the transversal and longitudinal parts

Dµν
ρ,a1

= TµνDT
ρ,a1

+ LµνDL
ρ,a1

, (27)

where Tµν = gµν − pµpν/p2 , Lµν = pµpν/p2 and

DT
ρ,a1

=
1

G−1
2 +ΠT

ρ,a1
(p2)

=
g2

ρ,a1
(p2)

M2
ρ,a1

− p2
,

DL
ρ,a1

=
1

G−1
2 +ΠL

ρ,a1
(p2)

. (28)

Here, ΠT
ρ,a1

and ΠL
ρ,a1

are the transversal and longitudinal
parts of the polarization operator Πµν

ρ,a1
(p2):

Πµν
ρ,a1

(p2) = i
2Nc

(2π)4

∫
d4kf2(k−)f2(k+)

×Sp [S(k−)Γρ,a1S(k+)Γρ,a1 ] .

The constant G2 is fixed by the ρ-meson mass

G−1
2 = −ΠT

ρ (Mρ)

and G2 = 6.5 GeV−2. Then the a1-meson mass is equal
to 970 MeV.

The constants gρ,a1(M
2
ρ,a1

) are equal to

g−2
ρ,a1

(M2
ρ,a1

) = −dΠT
ρ,a1

(p2)
dp2

|p2=M2
ρ,a1

. (29)

From eq. (29) we obtain gρ(Mρ) = 1.23, ga1(Ma1) = 1.33.
At p2 = 0 we have gρ(0) ≈ 2, ga1(0) ≈ 2.5. (see also fig. 1).

The decay ρ → ππ is described by the triangle quark
diagram. The amplitude for the process is

Aµ
(ρ→ππ) = a(ρ→ππ)(q1 − q2)µ , (30)
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Fig. 1. Momentum dependence of the mesons renormalization
functions.

where qi are momenta of the pions. We obtain a(ρ→ππ) =
5.72 and the decay width Γ(ρ→ππ) = 135MeV which is in
qualitative agreement with the experimental value 149.2±
0.7 MeV [17].

The decay a1 → ρπ is described in a similar manner.
The amplitude for the process a1 → ρπ is

Aµν
(a1→ρπ) = a(a1→ρπ)g

µν + b(a1→ρπ)p
νqµ , (31)

where p, q are momenta of a1-, ρ-mesons, respectively. We
obtain a(a1→ρπ) = 2.68 GeV, b(a1→ρπ) = 16.71 GeV−1.
The amplitude of the decay a1 → ρπ contains D and S
waves. The ratio of these waves has the form (see [10,15]):

D/S = −
√
2
(Eρ −Mρ)a(a1→ρπ) + b(a1→ρπ)Ma1 |*q |2
(Eρ + 2Mρ)a(a1→ρπ) + b(a1→ρπ)Ma1 |*q |2

−0.06 , (32)

|*q |2 = λ(M2
a1
,M2

ρ ,M
2
π)/(2Ma1)

2, E2
ρ = M2

ρ + |*q |2 ,
λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc

This ratio is in satisfactory agreement with the experimen-
tal dataD/Sexp = −0.108±0.016. The decay width equals
Γ(a1→ρπ) = 90 MeV. This value is noticeably smaller than
experiment 250–600 MeV [17].

The longitudinal component of the a1-meson field is
mixed with the pion. The amplitude describing this mixing
has the form

Aµ
(π→a1)

= iC(π→a1)(p
2)pµ,

where p is the momentum of the pion, and C(π→a1)(0)
in the chiral limit is equal to 190 MeV. The additional
pion kinetic term from the π-a1 mixing is ∆Lkin = ∆ ·
p2πa(p)2/2. In the chiral limit, ∆ is as follows:

∆=
C2

(π→a1)
(0)

g2
a1
(0)(G−1

2 +ΠL
a1
(0))

≈C2
(π→a1)

(0)G2/g
2
a1
(0)≈0.04.

(33)
∆ is small; therefore, the effect of the π-a1 mixing can be
neglected.
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Table 1. The comparison of the physical results which are obtained in local and nonlocal quark models. In the local NJL model
the decay width ρ → ππ is used for the fitting of the model parameters. Two sets of values corresponding to a different choice
of model parameters are given in columns 4, 5 (see table 4 in [10] and table I in [15]).

Quantity Our model [2] [10] [15] [17]

Mσ (MeV) 420 570 443.2 465.8 400–1200
Γσ→ππ (MeV) 150 190 108 135.1 600–1000
Γρ→ππ (MeV) 135 150 126 114 356 259 149.2± 0.7
Ma1 (MeV) 970 1030 946.8 1061.5 1340 1230± 40

Γa1→ρπ (MeV) 90 290 44 376.2 4020 385 250–600
D/S −0.06 −0.048 −0.087 −0.092 −0.075 −0.108± 0.016

5 Discussion and conclusion

In this work we have considered the possibility of con-
structing the SU(2) × SU(2) symmetric nonlocal chiral
quark model providing the absence of UV divergences and
quark confinement. These features of the model are speci-
fied by the nonlocal kernel which appears in the four-quark
interaction. Such a structure of the four-quark interaction
can be motivated by the instanton interactions [6–8].

The pseudoscalar, scalar, vector and axial-vector
mesons have been considered in the framework of this
model. The masses and strong coupling constants of the
mesons were described. It was shown that the functions
describing the renormalization of the meson fields notice-
ably decreased at large p2 in the physical domain (see
fig. 1).

Among the satisfactory predictions of the model are
the mass of the σ-meson, the decay width ρ → ππ and
the D/S ratio in the decay a1 → ρπ.

However, in the description of the a1-meson mass and
decay widths σ → ππ, a1 → ρπ our results are noticeably
smaller than the experimental data. Note that the width of
the decay a1 → ρπ strongly depends on the mass of the a1-
meson. Indeed, for Ma1 = 1.26 GeV we have Γ(a1→ρπ) ≈
200 MeV that is in qualitative agreement with experiment.

It is useful to compare the obtained results with the
analogous results obtained in the local NJL model [2] and
other nonlocal models with quark interactions of separable
type [10,15].

Remind that in the local NJL model the cut-off pa-
rameter Λ(NJL) = 1.2 GeV and the constituent-quark
mass m = 280 MeV are used. These parameters are fixed
by the decays π → µν (fπ = 93 MeV) and ρ → ππ
(gρ = 6.14). These parameters lead to the quark conden-
sate 〈q̄q〉0 = −(293MeV)3 and the current quark mass
mc = 3 MeV. In the present model m0 = 340 MeV plays
the role of the constituent-quark mass, whereas our pa-
rameter Λ = 340 MeV corresponds to the effective cut-
off parameter Λeff ≈ 800 MeV. As a result, we obtain
〈q̄q〉0 = −(188MeV)3 and mc = 13 MeV. Remind that
these values correspond to the physical pion mass.

Let us consider the π-a1 mixing in these models. In the
local NJL model the amplitude describing the π-a1 mix-
ing equals A

µ (NJL)
(π→a1)

= i
√
6mpµ. Therefore, the coefficient

C
(NJL)
(π→a1)

equals 680 MeV. This value is 3.5 times larger
than in the present model. As a result, it leads to the no-

ticeable additional renormalization of the pion field in the
local NJL model g̃(NJL)

π = g
(NJL)
π · Z1/2 = m/fπ, where

Z =
(
1− 6m2/M2

a1

)−1 ≈ 1.4 and g
(NJL)
π = g

(NJL)
σ , in our

model Z = 1.04. Therefore, in the local NJL model the
π-a1 mixing plays a more important role.

Let us compare also the amplitude of the decay width
σ → ππ in these models. In the local NJL model without
taking into account the π-a1 mixing in the external pion
legs this amplitude equals A

(NJL)
σ→π+π− = 4mg̃

(NJL)
π Z1/2 =

4 GeV. This amplitude is 2.4 times larger than in the
present model. However, after taking into account the
π-a1 mixing this amplitude takes the form A

(NJL)
σ→π+π− =

4mg̃
(NJL)
π Z−3/2 = 2 GeV. This is close to the amplitude

obtained in our work. This leads to a noticeable decrease
in the decay width Γσ→ππ = 190 MeV which also becomes
smaller than the experimental data and is in qualitative
agreement with the result of our model. The mass of the
σ-meson in NJL is 570 MeV and approximately 30% larger
than the result obtained here. Both the values do not con-
tradict the experimental data.

The decay ρ → ππ in [2] is used for fitting model
parameters, while in our model we predict it. The mass
of the a1-meson obtained in our model practically coin-
cides with the mass predicted in the local NJL model,
M

(NJL)
a1 ≈ 1 GeV.
In what follows we would like to compare our results

with the nonlocal model [10]. In this model a similar sep-
arable instanton-motivated form of the interaction is also
used. The main difference of our model with that of [10]
is connected with an additional requirement on a quark
propagator providing quark confinement. The quark mass
function in our model contains only one arbitrary param-
eter instead of the two parameters in [10]. In spite of the
minor freedom in choosing model parameters, our results
are close to the results obtained in [10] (see table 1).

It is interesting also to compare our results with those
obtained in [15], where the quark propagator is expressed
through the entire functions which are similar to the func-
tion used in our work (see eq. (9)). The quark interaction
in this work is of a separable type which is obtained from
the quark-gluon interaction with the help of a modified
gluon propagator. In this work, the decays ρ → ππ and
a1 → ρπ have also been calculated. The decay ratio D/S
is close to ours, while the decay widths strongly differ (see
table 1).



144 The European Physical Journal A

The failure of the local NJL model and its nonlocal
extensions to describe the σ-meson is expectable. Similar
problems appeared in the QCD sum rule method. In the
scalar channel with vacuum quantum numbers the correc-
tions from different sources may be valuable. Indeed, it
has recently been shown that the 1/Nc corrections in this
channel are rather big [18], and the Hartree-Fock approx-
imation may be inadequate in this case. Moreover, for a
correct description of the scalar meson it is necessary to
take into account the mixing with the four-quark state [19]
and the scalar glueball [20].

In future, we plan to describe electromagnetic interac-
tions in the framework of this model, calculate the e.m.
pion radius, polarizability of the pion and consider the
processes π0 → γγ, γ∗ → γπ in a wide domain of photon
virtuality. We also plan to generalize this model to the
U(3)×U(3) chiral group by introducing new parameters:
the mass of the strange quark ms and the cut-off Λs which
allows us to describe intrinsic properties and interactions
of strange mesons.

The authors thank A.E. Dorokhov for the fruitful collabora-
tion, and D. Blaschke, C.D. Roberts and V.L. Yudichev for
useful discussions. The work is supported by RFBR, grant
No. 02-02-16194 and the Heisenberg-Landau program.
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